
K = (v/U=2)'(dU~/dx) is the acceleration parameter (Kcr = 2.5"10-6); q is the thermal flux; 
Twa is the temperature of the surrounded surface; U~ is the velocity of the incoming~flow; 
n is the number of nodes of the computational grid in the direction of the y-axis; M~is the 
Mach number; Re x is the Reynolds number over the x-coordinate; and Cf denotes the local fric- 
tion coefficient. 
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HEAT TRANSFER BY MIXED CONVECTION IN A MOVING ROD BUNDLE 

V. I. Eliseev and Yu. P. Sovit UDC 532.54:536.24 

A mathematical model of mixed convection in moving rod bundles is proposed, 
and cooling in an open space is analyzed. Estimates of the local Nusselt 
numbers are obtained for quasistabi!ized conditions. 

The formation of fibers from polymer melts is fundamental to the production of synthetic 
fibers. The physical properties and quality of the fibers depend significantly on the heat- 
transfer intensity of the moving polymer jets with the surrounding medium. The extension 
of single fibers has now been fairly completely studied, and the corresponding mathematical 
models have been constructed [I, 2]. However, it is more common to form bundles of fibers. 
In such conditions, the spatial interaction of individual fibers and of the whole bundle 
with the external medium must be considered. The few studies of heat transfer in such condi- 
tions have mainly been qualitative and experimental in character [3, 4]. Accordingly, it 
is necessary to develop mathematical models and methods of calculation of heat transfer in 
moving fiber bundles. In addition, it is of interest to determine the role of various phys- 
ical factors in the overall pattern of heat transfer of the fiber bundle with the external 
medium. Thus, in the case of low velocities and high melt temperature (glass-fiber), free 
convection is important. Increase in the rate of fiber formation leads to increase in the 
role of induced convection. It is known [i] that, in the existing conditions of formation 
of a single synthetic fiber, the proportion of free convection in the overall heat-transfer 
process is around 10%. As yet, there are no such estimates for bundles of fibers. 

The filtrational flow model is widely used for the description of heat transfer in 
complex rod systems [5, 6]. It reflects the hydrodynamic and thermal interaction of the 
rods with one another and of the bundle as a whole with the surrounding atmosphere. In 
the literature, attention focuses on power units with high gas velocities, and accordingly 
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dimensionless relations are used for the dynamic and thermal sources. A significant differ- 
ence between that approach and the present formulation of the problem is the analytical 
determination of the friction and heat transfer in the volume of the bundle and the matching 
of the flow in the rod system with the surrounding medium. In contrast to [7, 8], where 
a flow model with induced convection was constructed, mixed convection is considered in the 
present work; the results of numerical calculations of some methods of bundle cooling are 
presented, and expressions for the local Nusselt numbers for rods in quasisteady flow condi- 
tions are found. 

Basic Equations and Boundary Conditions. Consider the laminar heat transfer of a verti- 
cal rod bundle moving in open space (Fig. i). The basic equations are the equations of gen- 
eralized filtrational motion within the framework of the boundary-layer model and the Bous- 
sinesq model, in the form [9] 

' ~aul ~ ~ T I - -  + v ( ~ r  ~ Oul ~ 
% 

a (ruO ~ a (rv~) _0, (1) 
Ox Or 

e-,pc; u, ~ § vl-~r ] e-'q + \ Or z § - ~ r  1" 

I n  d e r i v i n g  t h e s e  e q u a t i o n s ,  i t  i s  a s sumed  t h a t  t h e  t r a n s v e r s e  v e l o c i t i e s  a r e  c o n s i d e r a b l y  
l e s s  t h a n  t h e  l o n g i t u d i n a l  v e l o c i t i e s ,  t h e  f l o w  i s  s t e a d y ,  and p = p~ = c o n s t ,  T~ = c o n s t .  
For  f r e e  c o n v e c t i o n  in  t h e  o p p o s i t e  d i r e c t i o n ,  6 = - 1 .  A r e g i o n  o f  moving  homogeneous  f l u i d  
i s  a d j a c e n t  t o  t h e  b u n d l e .  S i n c e  t h e  f l o w  in  t h e  r e g i o n  o f  t h e  b u n d l e  i s  c o n s i d e r e d  w i t h i n  
t h e  b o u n d a r y - l a y e r  f r a m e w o r k ,  i t  i s  n a t u r a l  t o  u s e  t h e  w e l l - k n o w n  b o u n d a r y - l a y e r  e q u a t i o n s  
a l s o  in  t h e  e x t e r n a l  r e g i o n ;  t h e y  d i f f e r  f rom E q .  (1 )  i n  t h a t  s = 1, f = q = 0 ( i n  t h e  
e x t e r n a l  r e g i o n ,  t h e  s u b s c r i p t  1 i s  r e p l a c e d  by 2 ) .  

H a t c h i n g  o f  t h e  r e g i o n s  i s  by means o f  t h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s  

U~(X, ~ b ) =  8-1Ul(X' Rb)' Vl(X' Rb)=Ve(X '  ~b)'  TI(X' ~ =T~(x, Rb), (2 )  

P dr r=R b ff Or r=R b ~ r=Rb s s  Or 

C o n d i t i o n s  a t  i n f i n i t y  and a t  t h e  beam a x i s  mus t  be  added  h e r e .  

vl = O, Oul --0, ~8T1 = 0  (r = O), 
& Or (3) 

u2-+O, T2-~T~ ( r - ~ ) .  
To d e t e r m i n e  f and  q ,  t h e  f r e e - c e l l  model  f o r  t w o - p h a s e  s y s t e m s  i s  u s e d  [ 2 0 ] .  For  t h e  

c a s e  o f  l o n g i t u d i n a l  f l o w  a r o u n d  a c y l i n d e r  f o r m i n g  p a r t  o f  an a s s e m b l y ,  t h e  c e l l  i s  t h e  
region between two coaxial cylinders. The inner cylinder is a body of radius R r which is 
moving or in a flow, and the outer cylinder is a fluid shell of radius RA; the relation be- 
tween R A and the porosity of the bundle is given by the expression: g = 1 - (Rr/RA) 2 In 
[7-9], a modification of the cell model was proposed: at the outer boundary of the cell, 

~?b r 
\ - 

I t' 
Fig. i. Cooling of a moving rod bundle 
in open space. 
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the conditions for the velocity and temperature of the moving medium are: u = UA, T = T 5 
(at the rod surface, u = Ur, T = T r when r = Rr). The arbitrary quantities US, T A are de- 
termined by means of the filtrational parameters of the flow. In this interpretation, the 
individual cells interact with one another in the bundle and are related to the external 
medium by means of the boundary conditions in Eq. (2). Assuming axisymmetric mixed-convec- 
tive flow in the cell and using only the zero approximation of the successive~approximation 
method to solve the boundary-layer equations 
be obtained: 

In r 

= u r + (u~, - G )  ~ 
In RA 

Jg, r 

[ii], the following solution in the cell may 

X 

L/~.(Grr/Re ) 1 

4 in G 
R r  

- - x  

r 

T r - -  T= + In Rr r~--  r ( ~ -  R~) In RrRa + 

R~ 

(4) 

, T = ~  +(r~-rr) 

~n r 

G 
In Ra 

R r  

Knowing the velocity and temperature distribution in the cell, the friction and heat flux 
at the rod may be determined and related to f and q: 

2zrRr Ou Jtr=~r-- 2v(U~- -Ur )  Tr - - T ~  

Rr R,= 

[ ( Tr--T~ R~ )Tr--TA ~ J 
X ( e q - a ~ - - l )  T ~ - - T ~  - ? l n  �9 , 

..... R,r T r - -  g .  

q - -  aR~ X ar-~=Rr/ Rx ln  Ra , a e -  -- 2 In Ra 
R.r Rr 

X 

(s) 

The arbitrary quantities U A and T A may be found on the assumption that the filtrational velo- 
city is equal to the mean flow rate in the Cell, and the temperature is equal to the mean 
calorimetric quantity of the flow in the cell 

2~ e,x 2n Ra 
C urdr, T~ = -  '~ uTrdr. 

R, r , 

Substitution of Eq. (4) into Eq. (6) gives, after appropriate manipulations 

U A = Ur  ~- A u  ,~  Bt l  (T A - -  Tr)  , ( 7 )  

I 
Ta = Tr + ~ [--  m T+  ]/BT=-- 4ATu, (T r .... T=)], 

where 

AT = 6 

A D  = u l  - -  g U t - -  ~ (Qrrt ] :?~er) ~Z~Cl . 

1 - -  a ~  

Bu = 6U r (Grr/Rer) cl q- c~ 
(T r -- T=)(1 - -  ae) In RA ' 

Rr 

Ur (Gr'/Rer) [ G(cl+c~) i ca + cs + 
. ( T r - -  T~)  in RA ~ 1 - -  a~ 

Rr  

BT = Ur( l  --a~) 6(GrrtR%)Urc5 + Auc~. 
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The factors cj depend only on the geometric parameters of the bundle 

c 3 -- 

c 5 -- 

8 
c 1 -- (1 - -  O,Se - -  ae), 

4(1 - - Q  

In RA 

Rr (a, + 0,5ea~ -- i), 
ca 8 (1 -- e) 

1 I l n  RA + l , 5 ( a ~ - - l ) + 0 , 2 5 e a ~  ] ,  
8 (1 - -  e) Rr  

1 ( RA ) 
c~-- l n - - - - l + a ,  , 

In RA Rr 

8(1 --~) 

Rr 
[(1 - -  a~)(2e - -  i) -~- O,5ea~ - -  2ecJ. 

(8) 

By means of Eq. (7), local characteristics of the flow in the vicinity of the cylinder may 
be related to filtrational parameters at the given point, which are related to the whole 
flow field in the rod system and the surrounding medium by means of the filtrational equa- 
tions and boundary conditions. It was shown in [7] that the solutions obtained in the cell 
for the friction and heat flux in induced convection are in good agreement with the known 
approximate and accurate numerical solutions for triangular and rectangular regular rod 
assemblies. 

Thus, Eqs. (1)-(3), (5), and (7) completely define the problem of mixed convection in 
a system of moving rods in open space if the rod temperature is known. In calculating the 
cooling of heated cylinders, another equation must be added to this system. Assuming that 
the moving cylinder is thin and that the Blot number is considerably less than one, the heat- 
transfer equation of the rod is written in the form 

dT r 2~t?, r 07" r=~. 
9rCnrUr dx ~RTr qr' qr = - %  - -  o Or ; (9 )  

this equation closes the heat-transfer problem for a moving system of cooled cylinders. 

Results and Analysis. The above conjugate problem is solved numerically using the method 
of [12]. Two versions of mixed convection in the bundle are considered: convection in the 
direction of bundle motion and in the opposite direction. The distribution of filtrational 
velocities at the surface and in the center of the bundle over the length of the cooling 
zone is shown in Fig. 2. The basic parameters of the bundle are as follows: R b = 0.02 m; 
R r = 0.42.10 -~ m; U r = 0.5 m/sec; T0r = 100~ T~ = 20~ N = 200; Re b = 667.0; Gr b = 9.52• 
104. The thermophysical parameters of the surrounding medium correspond to the parameters 
of air. 

The examples considered indicate the following features of filtrational flow. Whereas 
for induced convection the limiting filtration rate in the bundle is the velocity of fiber 
motion (it is evident from Fig. 2 that this velocity is attained when x = 0.3 m), for convec- 
tion in the direction of the bundle the velocity at the center of the bundle increases con- 
siderably more intensively and becomes greater than the velocity of rod motion. This is 
also observed at the bundle surface; because of the strong inflow of the medium, it is less 
than the filtrational velocity with induced convection at first, but with increase in x it 
increases, exceeding U c and approaching the velocity at the center of the bundle. This be- 
havior of the cooling medium is due to the forces acting in the direction of fiber motion 
associated with free convection in the heated volume of the bundle. With cooling of the 
fibers, the influence of the upward forces decreases; therefore, the filtrational velocity 
reaches a maximum, and then must approach U c asymptotically with increase in x. 

For convection in the opposite direction to the bundle, the viscous friction at the 
fiber surface is compensated to some extent by the influence of free convection. This leads 
to considerable reduction in filtrational velocity in the bundle (Fig. 2a). 

The distribution of the filtrational velocities at the center and surface of the bundle 
over the length is shown in Fig. 2b for a less dense bundle (N = i00) with convection in 
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Fig. 2. Distribution of dimensionless filtrational velocities in 
mixed and induced convection in bundle (a) for 7 = 0, • and 
N = 200 and in forward convection (b) for N = i00 and ~ = 35.7 (i), 
71.4 (2), 107.1 (3), and 142.8 (4); s) velocity at center of 
bundle; w) at surface; continuous curves) forward convection; dash- 
dot curves) induced convection; dashed curves) inverse convection. 
x, meters. 

the direction of the bundle motion and various values of y = Grb/Re b. Increase in u leads 
to monotonic increase in the filtrational velocity in the bundle volume; for a less dense 
bundle, the velocity maximum is higher, other conditions being equal (curve 4 in Fig. 2b 
and continous curve s in Fig. 2a). In addition, significant acceleration of the gas at the 
center in the initial section is associated with intense ejection of the cooling medium and 
considerable drop in velocity at the bundle surface. At some value of ~, the longitudinal 
velocity at the boundary may be considerably less than the transverse velocity, which pre- 
vents the use of the boundary-layer approach. Note that, at such values of ~, a region of 
return gas flow appears in the bundle for inverse convection. 

These features of the hydrodynamic flow in the rod system also depend on the rate of 
cooling. The distribution of the fiber temperature at the surface and center of the bundle 
over the length is shown in Fig. 3 for N = 200. For comparison, the distribution of the 
temperature of single fibers moving at the same velocity with forward and inverse convection 
is also shown (continuous and dashed curves i). It is evident that fiber cooling in a bundle 
depends significantly on the intensity of the hydrodynamic processes determined by the inter- 
action of the bundle with the external medium. Thus, for the given case, the fiber tempera- 
ture in the bundle differs fairly significantly from the temperature of the individual fibers 

T 

. . . . . . .  _ - / _ 7 7 _ 7 _ : -  

\ \-'. 
",. . . . .  

2fl 

I I I } I 

o 0,2 o,~ 0,6 o,8 

Fig. 3. Distribution of rod temperature on cool- 
ing in bundle and temperature of single rods in 
induced and mixed convection when N = 200, y = 0, 
• I) temperature of single fibers; s) tem- 
perature at center of bundle; w) at surface; 
continuous curves) forward convection; dash-dot 
curves) induced convection; dashed curves) in- 
verse convection. T, ~ 
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For induced convection, 
the form 

(R r = 0.42-10 -4 m; Re r = 1.4; Gr r = 0.0012). The upper group of curves characterizes the 
temperature distribution of fibers at the center of the bundle. It is evident that they 
vary fairly weakly over the length; the curve for forward convection is somewhat lower than 
the others here. This indicates a higher rate of cooling than with inverse and induced con- 
vection, since in this case the bundle ejects a greater quantity of cooling medium. For 
the same reason, the fiber temperature at the bundle surface for forward convection varies 
fairly sharply, almost reaching the temperature of the external medium in a short cooling 
section. Further stabilization of the flow in the bundle leads to decrease in ejection and 
growth of the external boundary layer. Consequently, heat fluxes from the hotter inner lay- 
ers of gas propagate to the external regions; the gas temperature in the surface layers 
begins to increase and, with it, the fiber temperature. 

For this case, the fiber temperature with induced convection varies analogously. For 
inverse convection, the temperature dependence is monotonic in the given cooling section. 

The heat-transfer intensity of the rods in the bundle may be characterized by the local 
Nusselt number: Nu r = ~Dr/X. Using Eq. (4), it is found that 

Nut_  - 2 T A - - T r  �9 (10) 
In Ra T -- T 1 

r g 

it is simple to express T A in terms of Tr, T I, and Ul, and Nu r takes 

N u r ~ 2 1 n _  1 R,, [ C o + ( 1 - - a , - - e C o )  U r - ]  -1 
Rr  ua .l ' ( 1 1 )  

where c o = c4/(i -ag). 

It is evident that Eq. (ii) is simplified with induced convection in a system of mo- 
tionless rods (U r = 0) 

Nu~---2c~11n -1 R~ 2 [ l n ( l - - - e )  + el 
- , ( 1 2 )  

Rr In(1 - -  e)[0,5ln (1 - - a )  @ II + e 

i.e., Nu~ ~ depends only on the bundle porosity or on the relative packing step b/D r for 
regular structures. In the case of heat transfer in a system of moving rods, Nu r depends 
parametrically on the dynamic characteristic of the filtrational flow Ur/ul, and must be 
determined in solving the complete conjugate problem in Eqs. (1)-(3) and (9). However, tak- 
ing into account that dynamic stabilization sets in under induced convection in a system 
of moving rods in the basic volume of the bundle, except for a surface zone, i.e., u I + U r, 
the following expression may be written for Nu r 

N u ~ = 2 1 n - 1  R~ [ C o + ( 1 - - a ~ - - c o e ) 1 - 1 .  
Rr 

In terms of the porosity 

Nu~ -- - -  2 [In (1 - -  e) + ~] ~ ( 1 3 )  
0,5 [ln (1 - - e )  § a] z + [0,5 lnZ (1 - - e )  + ln(1 - - e )  + el(1 - - e )  

In the general case of unstabilized mixed convection, T A must be calculated from Eq. (7) in 
determining Nur. The fairly complex dependence Tk(ul, T l) does not yield simple analytical 
expressions for Nu r. Some simplification of the expression for Nu r is possible under the 
condition of thermal stabilization in the bundle T I + T r, permitting linearization of the 
relation for T A. As a result 

Nur = 2 [A + B (Ur/u~) - -  6D (Grr/Rer)(Ur/uOl-L 

A Co In Ra , B = ( 1 - - a ~ - - e c o )  ln R~ , 
R r R r 

D = (c5 q- coco In RA 
Rr 

(14) 
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TABLE i. 
Porosity 

Dependence of A, B, and D in Eq. (14) on Bundle 

g [ 0,5 I 0,6 0,7 0,8 0,9 0,95 

A ] 0 ,243 ]  0,327 0,438 0,6 0,89 1,19 

B I --0,025 1 --0,038 --0,055 --0,075 --0,099 --0,11 

D [ 0,0004 I 0,0012 0,0036 0,0118 0,0533 0,1728 

The parametric dependence in Eq. (14) enables the influence of various factors on the heat 
transfer in the bundle to be sufficiently clearly shown. The first term in the denominator 
depends only on the packing density of the bundle or g; the second term takes account of 
the contribution of dynamic flow parameters; and the third expresses the influence of free 
convection. Table 1 gives A, B, D as a function of the bundle porosity. Taking into ac- 
count that B ~ 10-1A, D ~ 10-iA approximately, and that Grr/Rer ~ 10 -2 for most fiber bun- 
dles, it may be concluded that Nu r is practically independent of Grr/Re r for stabilized 
forward mixed convection, is determined solely by the packing density of the bundle, and 
may be calculated on the basis of Eq. (13). For intense dynamic flows in bundles, when u i 
is considerably greater than Ur, approximate values of Nu r may be obtained from Eq. (12). 

The dependence of Nur ~ and Nur i on the porosity ~ is shown in Fig. 4, together with 
the dependence of Nu r for the case of stabilized convection in an infinite rod assembly 
(curve 2 and the data of approximate solution [13] and accurate numerical solution [14]). 
These results suggest that, for stabilized convection in rod bundles, despite the different 
heat-transfer conditions (gradient flow, nongradient flow, induced flow, mixed-convective 
flow), there is some dependence Nur(E) which approximates the data in the range 0.6 g ~ < 
1 to within • (is close to 1 in cases that are of practical importance). For example, 
Eq. (13) may be such a dependence. 

For inverse convection in bundles of moving fibers, when there is no dynamic stabiliza- 
tion, the estimates in Eqs. (12) and (13) may give large errors. Thus, curve 4 in Fig. 4 
is obtained for Ur/u i = 3.3. This difference arises in that in the given case the terms 
A and B(Ur/u i) become commensurate in value, i.e., the influence of dynamic parameters on 
the heat transfer of the rod increases significantly. The value of Nu r may then only be ob- 
tained from the solution of the complete problem, and Eq. (13) may be used to estimate the 
lower limit on Nu r. 

Theoretical and experimental data on free convection in regular rod assemblies were 
given in [15]. For the relative packing step b/D r = 1.68, the experimental range of Nusselt 
numbers observed is Nu r = 4.7-5.4; for b/D r = 2.03, Nur = 3~ The corresponding values 

Nur - 

I4 

12 

1D 

8 

6 

2 

\ 

;%\0 \ 

I I 1 I I I ---~ 

o,~ 0,6 0,8 $ 

Fig. 4. Dependence of local Nusselt number 
Nu r in rod bundle on porosity g: I) Eq. (12); 
2) dependence of [7]; 3) Eq. (13); 4) Eq. (ii) 
with Ur/u i = 3.3; 5) data of [13]; 6)idata of 
[ i4 ] .  
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given by Eq. (13) are: Nu r = 5.55 and Nu r = 4.08. The good agreement of the experimental 
and theoretical values of Nu r suggests that the heat-transfer model proposed is adequate and 
the dependences Nur~ Nur1(e) are reliable. 

The given mathematical model of the motion and heat transfer in a bundle of moving rods 
may be used in design practice to estimate the efficiency of various methods of cooling fiber 
bundles and to choose the basic design parameters of technological devices. In addition, 
the present results may serve as the basis for the development of a more general model of 
synthetic-fiber and glass-fiber formation in bundles, and the dependences of the localNus- 
selt numbers may be used to create engineering methods of thermal calculation of such 
processes. 

NOTATION 

x, r, longitudinal and radial coordinates of cylindrical system; u, v, corresponding 
velocity components; T, temperature; p, density; Cp, specific heat at constant pressure; %, 
thermal conductivity; ~, kinematic viscosity; D, dynamic viscosity; Ur, Tr, rod velocity and 
temperature; T~, temperature of surrounding medium; T0c , initial rod temperature; Dr, rod 
diameter; R r, rod radius; R A, extremal radius of cell; Rb, radius of rod bundle; e, porosity; 
Re r = UrRr/~ , Reynolds number of rod; Re b = UrRb/~, Reynolds number of bundle; Gr r = gRr 3 • 
(T c T~)/(v2T=), Grashof number of rod; Gr b = gRb3(Tr - T~)/(~2T~), Grashof number of bundle; 
f, q, volume resistance and power of heat sources; N, number of rods in bundle; y = Grb/Reb; 
Nu r = ~Dr/% , Nusselt number for rod; b/Dr, relative packing step of rods in bundle. Indices: 

i, filtrational parameters of gas in bundle; 2, parameters of gas in external spatial layer; 
r, rod parameters; b, bundle parameters. 
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